形态学操作是指基于形状的一系列图像处理操作,包括膨胀,腐蚀,二值化,开运算,闭运算,顶帽算法,黑帽算法,形态学梯度等,最基本的形态学操作就是膨胀和腐蚀.
一.膨胀
首先需要明确一个概念,膨胀和腐蚀都是针对于图像中较亮的区域而言的,膨胀就是亮的区域变多了,而腐蚀就是暗的区域变多了.
膨胀的功能主要有消除噪声,分割出独立的图像元素,在图像操作的时候,有时候需要对图像中的某些形状进行检测,而这些形状相互连接在一起,不好分开检测,膨胀就能切开这些形状(很小的连接位置),或者图像中有很小块的黑斑,或许是相机上的影响,膨胀,也能消除这些小的黑斑
膨胀的基本思路就是图像与一个核函数进行卷积,并取出结果中的极大值作为结果,使得图像中的高亮区域增长.这个核的形状,锚点都可以进行设置,OPENCV提供了API供我们获得核.
API:Mat getStructuringElement(int 内核形状,Size 内核尺寸,Point 锚点位置)
注:内核形状可以取方形MORPH_RECT,十字形MORPH_CROSS,椭圆形MORPH_ELLIPSE
锚点位置默认值Point(-1,-1),取形状的中心
通过该API就可以获得相应的计算核,接下来计算膨胀的函数为
API:void dilate(源图像,目标图像,膨胀核,锚点,int 迭代次数,int边界模式,int 边界为常数时边界值)
注:该API支持in_place(源图像可以做目的图像参数,算法会修改源图像内数据),迭代次数默认为1
例子如下
Mat srcImage;//膨胀const int g_dilateIterMax = 100;//迭代次数int g_nDilateIterValue;const int g_dilateCoreMax = 100;//核大小int g_nDilateCoreValue;Mat dilateImage;void OnDilateIterTrackbar(int pos,void* userData);void onDilateCoreSizeTrackBar(int pos,void* userData);int main(int argc,char* argv){ srcImage = imread("F:\\opencv\\OpenCVImage\\erode_dilate.jpg"); namedWindow("src image"); namedWindow("dilate image"); g_nDilateIterValue = 1; g_nDilateCoreValue = 5; createTrackbar("inter count", "dilate image", &g_nDilateIterValue, g_dilateIterMax,OnDilateIterTrackbar); createTrackbar("core size", "dilate image", &g_nDilateCoreValue, g_dilateCoreMax,onDilateCoreSizeTrackBar); OnDilateIterTrackbar(g_nDilateIterValue,0); moveWindow("src image", 0, 0); moveWindow("dilate image", srcImage.cols, 0); imshow("src image", srcImage); waitKey(0); return 0; }//调整迭代次数void OnDilateIterTrackbar(int pos,void* userData){ if(pos == 0||g_nDilateCoreValue == 0) { imshow("dilate image", srcImage); } else { if(g_nDilateCoreValue%2 == 0) { g_nDilateCoreValue++; } Mat core = getStructuringElement(MORPH_RECT, Size(g_nDilateCoreValue,g_nDilateCoreValue)); dilate(srcImage, dilateImage, core,Point(-1,-1),g_nDilateIterValue); imshow("dilate image", dilateImage); }}//调整核大小void onDilateCoreSizeTrackBar(int pos,void* userData){ if(pos == 0 || g_nDilateIterValue == 0) { imshow("dilate image", srcImage); } else { if(g_nDilateCoreValue%2 == 0) { g_nDilateCoreValue++; } Mat core = getStructuringElement(MORPH_RECT, Size(g_nDilateCoreValue,g_nDilateCoreValue)); dilate(srcImage, dilateImage, core,Point(-1,-1),g_nDilateIterValue); imshow("dilate image", dilateImage); }}
二.腐蚀
腐蚀与膨胀正好相反,是求局部最小值的操作,亮的地方会减少,黑的地方会增多,在图像中连接接近的区域,消除高亮造成的噪声
API: void erode(源,目的,核,锚点,迭代次数,边缘类型,边缘为常数时边界值);
注:腐蚀和膨胀API的形式一致
使用代码
//腐蚀Mat srcImage;const int g_erodeIterMax = 100;int g_nErodeIterValue;const int g_erodeCoreMax = 100;int g_nErodeCoreValue;Mat erodeImage;void OnErodeIterTrackbar(int pos,void* userData);void onErodeCoreSizeTrackBar(int pos,void* userData);int main(int argc,char* argv){ srcImage = imread("F:\\opencv\\OpenCVImage\\erode_dilate.jpg"); namedWindow("src image"); namedWindow("erode image"); g_nErodeIterValue = 1; g_nErodeCoreValue = 5; createTrackbar("inter count", "erode image", &g_nErodeIterValue, g_erodeIterMax,OnErodeIterTrackbar); createTrackbar("core size", "erode image", &g_nErodeCoreValue, g_erodeCoreMax,onErodeCoreSizeTrackBar); OnErodeIterTrackbar(g_nErodeIterValue, 0); moveWindow("src image", 0, 0); moveWindow("erode image", srcImage.cols, 0); imshow("src image", srcImage); waitKey(0); return 0; }//调整迭代次数void OnErodeIterTrackbar(int pos,void* userData){ if(pos == 0 || g_nErodeCoreValue == 0) { imshow("erode image", srcImage); } else { if(g_nErodeCoreValue%2 == 0) { g_nErodeCoreValue++; } Mat core = getStructuringElement(MORPH_RECT, Size(g_nErodeCoreValue,g_nErodeCoreValue),Point(-1,-1)); erode(srcImage, erodeImage, core,Point(-1,-1),g_nErodeIterValue); imshow("erode image", erodeImage); }}//调整核大小void onErodeCoreSizeTrackBar(int pos,void* userData){ if(pos == 0 || g_nErodeIterValue == 0) { imshow("erode image", srcImage); } else { if(g_nErodeCoreValue%2 == 0) { g_nErodeCoreValue++; } Mat core = getStructuringElement(MORPH_RECT, Size(g_nErodeCoreValue,g_nErodeCoreValue),Point(-1,-1)); erode(srcImage, erodeImage, core,Point(-1,-1),g_nErodeIterValue); imshow("erode image", erodeImage); }}
三.形态学滤波算法
形态学的高级操作,往往都建立在基础的膨胀和腐蚀的操作之上
1.开运算:开运算是一个先腐蚀,后膨胀的过程,用于在图像中消除小的物体,在纤细点处分离物体,在平滑化较大的物体的边界的同时不明显改变物体的体积.
2.闭运算:先膨胀后腐蚀的过程,能够用于消除物体中的小型黑洞
3.形态学梯度:膨胀图和腐蚀图之差,对二值图像进行这一操作,可以将团块的边缘突出来,可以使用形态学梯度来保留物体的边缘轮廓.
4.顶帽:源图像和开运算的结果的差值,往往用来分离比邻近点亮一点的斑块,在一幅图具体大幅的背景,而微小物体有比较有规律的情况下,可以使用top_hat运算进行背景的提取
5.黑帽:闭运算的结果与源图像之差,突出了比源图像轮廓周围更暗的区域,往往用于分离比邻近点暗一些的斑块.
核心API:void morpholgyEx(源,目标,int 形态学操作标志,mat 形态学操作内核,Point 锚点,int 迭代次数,int 边界模式,int 边界为常数时的边界值).
注:形态学操作标志的取值如下:MORPH_OPEN开运算 MORPH_CLOSE 闭运算 MORPH_GRENIENT 形态学梯度 MORPH_TOPHAT顶帽 MORPH_BLACKHAT黑帽 MORPH_ERODE腐蚀 MORPH_DILATE 膨胀
形态学操作内核就是前面膨胀腐蚀使用的内核.
使用范例如下:
1.开运算 闭运算 形态学梯度三者联合
//源¡ä图ª?像?Mat srcImage;//开a运?算?const int g_openIterMax = 100;int g_nopenIterValue;const int g_openCoreMax = 100;int g_nopenCoreValue;Mat openImage;void OnopenIterTrackbar(int pos,void* userData);void onopenCoreSizeTrackBar(int pos,void* userData);//闭À?运?算?const int g_closeIterMax = 100;int g_ncloseIterValue;const int g_closeCoreMax = 100;int g_ncloseCoreValue;Mat closeImage;void OncloseIterTrackbar(int pos,void* userData);void oncloseCoreSizeTrackBar(int pos,void* userData);//形?态¬?学¡ì梯¬Y度¨¨const int g_gredientIterMax = 100;int g_ngredientIterValue;const int g_gredientCoreMax = 100;int g_ngredientCoreValue;Mat gredientImage;void OngredientIterTrackbar(int pos,void* userData);void ongredientCoreSizeTrackBar(int pos,void* userData);int main(int argc,char* argv[]){ srcImage = imread("F:\\opencv\\OpenCVImage\\morpholgy.jpg"); g_nopenIterValue = 1; g_nopenCoreValue = 5; namedWindow("open image"); createTrackbar("iter count", "open image", &g_nopenIterValue, g_openIterMax,OnopenIterTrackbar,0); createTrackbar("core size", "open image", &g_nopenCoreValue, g_openCoreMax,onopenCoreSizeTrackBar,0); onopenCoreSizeTrackBar(g_nopenCoreValue, 0); g_ncloseCoreValue = 5; g_ncloseIterValue = 1; namedWindow("close image"); createTrackbar("iter count", "close image", &g_ncloseIterValue, g_closeIterMax,OncloseIterTrackbar,0); createTrackbar("core size", "close image", &g_ncloseCoreValue, g_closeCoreMax,oncloseCoreSizeTrackBar,0); oncloseCoreSizeTrackBar(g_ncloseCoreValue, 0); g_ngredientCoreValue = 5; g_ngredientIterValue = 1; namedWindow("gredient image"); createTrackbar("iter count", "gredient image", &g_ngredientIterValue, g_gredientIterMax,OngredientIterTrackbar,0); createTrackbar("core size", "gredient image", &g_ngredientCoreValue, g_gredientCoreMax,OngredientIterTrackbar,0); OngredientIterTrackbar(g_ngredientIterValue, 0); imshow("src image", srcImage); moveWindow("src image", 0, 0); moveWindow("open image", srcImage.cols, 0); moveWindow("close image", srcImage.cols*2, 0); moveWindow("gredient image", srcImage.cols*3, 0); waitKey(0); return 0;}void OnopenIterTrackbar(int pos,void* userData){ if(g_nopenCoreValue == 0||g_nopenIterValue == 0) { imshow("open image", srcImage); } else { if(g_nopenCoreValue%2 == 0) g_nopenCoreValue++; Mat core = getStructuringElement(MORPH_RECT, Size(g_nopenCoreValue,g_nopenCoreValue)); morphologyEx(srcImage, openImage, MORPH_OPEN, core,Point(-1,-1),g_nopenIterValue); imshow("open image", openImage); }}void onopenCoreSizeTrackBar(int pos,void* userData){ if(g_nopenCoreValue == 0||g_nopenIterValue == 0) { imshow("open image", srcImage); } else { if(g_nopenCoreValue%2 == 0) g_nopenCoreValue++; Mat core = getStructuringElement(MORPH_RECT, Size(g_nopenCoreValue,g_nopenCoreValue)); morphologyEx(srcImage, openImage, MORPH_OPEN, core,Point(-1,-1),g_nopenIterValue); imshow("open image", openImage); }}void OncloseIterTrackbar(int pos,void* userData){ if(g_ncloseCoreValue == 0||g_ncloseIterValue == 0) { imshow("close image", srcImage); } else { if(g_ncloseCoreValue%2 == 0) g_ncloseCoreValue++; Mat core = getStructuringElement(MORPH_RECT, Size(g_ncloseCoreValue,g_ncloseCoreValue)); morphologyEx(srcImage, closeImage, MORPH_CLOSE, core,Point(-1,-1),g_ncloseIterValue); imshow("close image", closeImage); }}void oncloseCoreSizeTrackBar(int pos,void* userData){ if(g_ncloseCoreValue == 0||g_ncloseIterValue == 0) { imshow("close image", srcImage); } else { if(g_ncloseCoreValue%2 == 0) g_ncloseCoreValue++; Mat core = getStructuringElement(MORPH_RECT, Size(g_ncloseCoreValue,g_ncloseCoreValue)); morphologyEx(srcImage, closeImage, MORPH_CLOSE, core,Point(-1,-1),g_ncloseIterValue); imshow("close image", closeImage); }}void OngredientIterTrackbar(int pos,void* userData){ if(g_ngredientCoreValue == 0||g_ngredientIterValue == 0) { imshow("gredient image", srcImage); } else { if(g_ngredientCoreValue%2 == 0) g_ngredientCoreValue++; Mat core = getStructuringElement(MORPH_RECT, Size(g_ngredientCoreValue,g_ngredientCoreValue)); morphologyEx(srcImage, gredientImage, MORPH_GRADIENT, core,Point(-1,-1),g_ngredientIterValue); imshow("gredient image", gredientImage); }}void ongredientCoreSizeTrackBar(int pos,void* userData){ if(g_ngredientCoreValue == 0||g_ngredientIterValue == 0) { imshow("gredient image", srcImage); } else { if(g_ngredientCoreValue%2 == 0) g_ngredientCoreValue++; Mat core = getStructuringElement(MORPH_RECT, Size(g_ngredientCoreValue,g_ngredientCoreValue)); morphologyEx(srcImage, gredientImage, MORPH_GRADIENT, core,Point(-1,-1),g_ngredientIterValue); imshow("gredient image", gredientImage); }}
2. 顶帽 黑帽结合
Mat srcImage;//顶£¤帽¡À tophatconst int g_tophatIterMax = 100;int g_ntophatIterValue;const int g_tophatCoreMax = 100;int g_ntophatCoreValue;Mat tophatImage;void OntophatIterTrackbar(int pos,void* userData);void ontophatCoreSizeTrackBar(int pos,void* userData);//黑¨²帽¡Àconst int g_blackhatIterMax = 100;int g_nblackhatIterValue;const int g_blackhatCoreMax = 100;int g_nblackhatCoreValue;Mat blackhatImage;void OnblackhatIterTrackbar(int pos,void* userData);void onblackhatCoreSizeTrackBar(int pos,void* userData);int main(int argc,char* argv[]){ srcImage = imread("F:\\opencv\\OpenCVImage\\morpholgy.jpg"); g_ntophatIterValue = 1; g_ntophatCoreValue = 5; namedWindow("tophat image"); createTrackbar("iter count", "tophat image", &g_ntophatIterValue, g_tophatIterMax,OntophatIterTrackbar,0); createTrackbar("core size", "tophat image", &g_ntophatCoreValue, g_tophatCoreMax,ontophatCoreSizeTrackBar,0); ontophatCoreSizeTrackBar(g_ntophatCoreValue, 0); g_nblackhatCoreValue = 5; g_nblackhatIterValue = 1; namedWindow("blackhat image"); createTrackbar("iter count", "blackhat image", &g_nblackhatIterValue, g_blackhatIterMax,OnblackhatIterTrackbar,0); createTrackbar("core size", "blackhat image", &g_nblackhatCoreValue, g_blackhatCoreMax,onblackhatCoreSizeTrackBar,0); onblackhatCoreSizeTrackBar(g_nblackhatCoreValue, 0); imshow("src image", srcImage); moveWindow("src image", 0, 0); moveWindow("tophat image", srcImage.cols, 0); moveWindow("blackhat image", srcImage.cols*2, 0); waitKey(0); return 0;}void OntophatIterTrackbar(int pos,void* userData){ if(g_ntophatCoreValue == 0||g_ntophatIterValue == 0) { imshow("tophat image", srcImage); } else { if(g_ntophatCoreValue%2 == 0) g_ntophatCoreValue++; Mat core = getStructuringElement(MORPH_RECT, Size(g_ntophatCoreValue,g_ntophatCoreValue)); morphologyEx(srcImage, tophatImage, MORPH_TOPHAT, core,Point(-1,-1),g_ntophatIterValue); imshow("tophat image", tophatImage); }}void ontophatCoreSizeTrackBar(int pos,void* userData){ if(g_ntophatCoreValue == 0||g_ntophatIterValue == 0) { imshow("tophat image", srcImage); } else { if(g_ntophatCoreValue%2 == 0) g_ntophatCoreValue++; Mat core = getStructuringElement(MORPH_RECT, Size(g_ntophatCoreValue,g_ntophatCoreValue)); morphologyEx(srcImage, tophatImage, MORPH_TOPHAT, core,Point(-1,-1),g_ntophatIterValue); imshow("tophat image", tophatImage); }}void OnblackhatIterTrackbar(int pos,void* userData){ if(g_nblackhatCoreValue == 0||g_nblackhatIterValue == 0) { imshow("blackhat image", srcImage); } else { if(g_nblackhatCoreValue%2 == 0) g_nblackhatCoreValue++; Mat core = getStructuringElement(MORPH_RECT, Size(g_nblackhatCoreValue,g_nblackhatCoreValue)); morphologyEx(srcImage, blackhatImage, MORPH_BLACKHAT, core,Point(-1,-1),g_nblackhatIterValue); imshow("blackhat image", blackhatImage); }}void onblackhatCoreSizeTrackBar(int pos,void* userData){ if(g_nblackhatCoreValue == 0||g_nblackhatIterValue == 0) { imshow("blackhat image", srcImage); } else { if(g_nblackhatCoreValue%2 == 0) g_nblackhatCoreValue++; Mat core = getStructuringElement(MORPH_RECT, Size(g_nblackhatCoreValue,g_nblackhatCoreValue)); morphologyEx(srcImage, blackhatImage, MORPH_BLACKHAT, core,Point(-1,-1),g_nblackhatIterValue); imshow("blackhat image", blackhatImage); }}